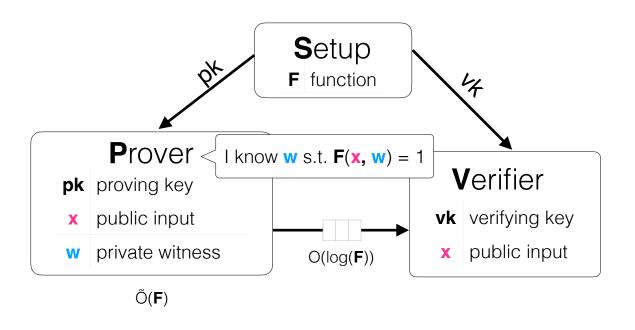
Succinct Arguments

Lecture 02: Modern zkSNARK Constructions

Succinct Non-Interactive Arguments (SNARGs)

Mic94, Groth10, GGPR13, Groth16... ..., GWC19, CHM**M**VW20, ...



Succinct Non-Interactive Arguments (SNARGs)

- Completeness: If $(F, x, w) \in \mathcal{R}$, $\Pr\left[\mathbf{V}(\mathsf{vk}, x, \pi) = 1 : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk}, x, w)}\right] = 1.$
- **Soundness**: If $(F, x, w) \notin \mathcal{R}$, for all efficient provers $\tilde{\mathbf{P}}$ Pr $\left[\mathbf{V}(\mathsf{vk}, x, \pi) = 1 : \begin{pmatrix} (\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F) \\ \pi \leftarrow \tilde{\mathbf{P}}(\mathsf{pk}, x) \end{pmatrix} \right] \approx 0$

• Succinctness: $|\pi| = O(\text{polylog} |F|)$

What if there's always a witness?

Soundness: If
$$(F, x, w) \notin \mathcal{R}$$
, then for all efficient provers $\tilde{\mathbf{P}}$

$$\Pr\left[\mathbf{V}(\mathsf{vk}, x, \pi) = 1 : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \tilde{\mathbf{P}}(\mathsf{pk}, x)}\right] \approx 0$$

- $F(x, w) := SHA2(w) \stackrel{?}{=} x$: there is always a preimage!
- $F((m, pk), \sigma) := VerifySignature(pk, m, \sigma) \stackrel{?}{=} 1$: if pk is a valid public key, there is always a valid signature!
- Generally many examples where witness always exists!

SNARGs of Knowledge (SNARKs)

• Completeness: For all $(F, x, w) \in \mathcal{R}$,

Pr $\left[\mathbf{V}(\mathsf{vk}, x, \pi) = 1 : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk}, x, w)} \right] = 1.$

• Knowledge Soundness: If $V(vk, x, \pi) = 1$, then P "knows" w such that $(F, x, w) \in \mathcal{R}$

• Succinctness: $|\pi| = O(\log |F|)$

SNARGs of Knowledge (SNARKs)

• Completeness: For all $(F, x, w) \in \mathcal{R}$,

Pr $\left[\mathbf{V}(\mathsf{vk}, x, \pi) = 1 : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk}, x, w)} \right] = 1.$

ullet Knowledge Soundness: For each efficient \dot{P} there exists an extractor \dot{E} such that

Pr
$$\begin{bmatrix} V(\mathsf{vk}, x, \pi) = 1 & (\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F) \\ \wedge & : & \pi \leftarrow \tilde{\mathbf{P}}(\mathsf{pk}, x) \\ (F, x, w) \notin \mathcal{R} & w \leftarrow \mathbf{E}_{\tilde{\mathbf{P}}}(\mathsf{pk}, x) \end{bmatrix} \approx 0$$

• Succinctness: $|\pi| = O(\log |F|)$

What about privacy?

- $F(x, w) := SHA2(w) \stackrel{?}{=} x$: Does proof reveal info about preimage?
- $F((m, pk), \sigma) := VerifySignature(pk, m, \sigma) \stackrel{?}{=} 1$: Does proof reveal info about which signature was used?
- $F(x = \text{score}, w = \text{credit_hist}) := \text{CreditModel}(w) \stackrel{?}{=} x$ Does proof reveal info about credit history?

Verifier is the adversary now!

Zero Knowledge SNARKs (zkSNARKs)

- Completeness: For all $(F, x, w) \in \mathcal{R}$, ...
- Knowledge Soundness: For each efficient \tilde{P} there exists an extractor E such that ...
- ullet **Zero Knowledge**: Proof reveals no information to ${f V}$ other than validity of w

• Succinctness: $|\pi| = O(\log |F|)$

Zero Knowledge SNARKs (zkSNARKs)

- Completeness: For all $(F, x, w) \in \mathcal{R}$, ...
- Knowledge Soundness: For each efficient \tilde{P} there exists an extractor E such that ...
- Zero Knowledge: For all $(F, x, w) \in R$, and all efficient $\hat{\mathbf{V}}$ there exists an **simulator Sim** such that

$$\Pr\left[\mathbf{V}(\mathsf{vk},x,\pi) : \frac{(\mathsf{pk},\mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathsf{Sim}(\mathsf{pk},x)}\right] = \Pr\left[\mathbf{V}(\mathsf{vk},x,\pi) : \frac{(\mathsf{pk},\mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk},x,w)}\right]$$

• Succinctness: $|\pi| = O(\log |F|)$

Doesn't this break soundness?

$$\Pr\left[\mathbf{V}(\mathsf{vk},x,\pi) : \frac{(\mathsf{pk},\mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathsf{Sim}(\mathsf{pk},x)}\right] = \Pr\left[\mathbf{V}(\mathsf{vk},x,\pi) : \frac{(\mathsf{pk},\mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk},x,w)}\right]$$

Sim has same success probability as honest prover!

This is actually okay: we provide Sim with additional powers!

- Interactive case: Sim can rewind verifier
- Non-interactive case: Sim gets "trapdoor"/secret information

What about succinct verification?

Succinctness:
$$|\pi| = O(\text{polylog}|F|)$$

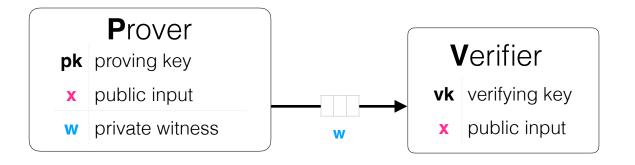
- $F(x, w) = SHA2^{10^6}(w) \stackrel{?}{=} x$: Do I need to compute 10^6 hashes to verify proof?
- $F(x = \text{score}, w = \text{credit_hist}) = \text{CreditModel}(w) \stackrel{?}{=} x$ Do I need to evaluate complex model to verify proof?

Strongly Succinct zkSNARKs

- Completeness: For all $(F, x, w) \in \mathcal{R}, ...$
- Knowledge Soundness: For each efficient \tilde{P} there exists an extractor E such that ...
- Zero Knowledge: For all $(F, x, w) \in R$, and all efficient V there exists an **simulator Sim** such that $\Pr\left[\mathbf{V}(\mathsf{vk}, x, \pi) : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathsf{Sim}(\mathsf{pk}, x)}\right] = \Pr\left[\mathbf{V}(\mathsf{vk}, x, \pi) : \frac{(\mathsf{pk}, \mathsf{vk}) \leftarrow \mathsf{Setup}(F)}{\pi \leftarrow \mathbf{P}(\mathsf{pk}, x, w)}\right]$
- Succinctness: $|\pi| = O(\log |F|)$ and $\mathsf{Time}(\mathbf{V}) = O(\mathsf{polylog}(|F|), |x|)$

Constructing zkSNARKs

Starting point: Trivial NP Protocol

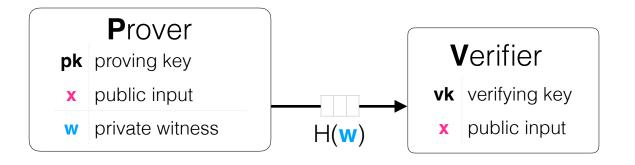


Problem 1: Non-succinct proof!

Problem 2: Non-succinct verification!

Problem 3: Not hiding at all!

Strawman 1: Hash the witness

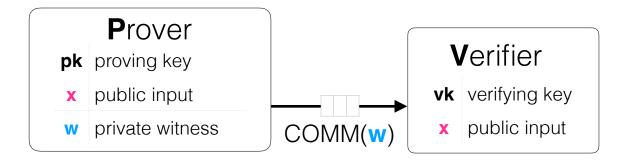


Problem 1 solved: Succinct proof!

Problem 2: How to verify?

Problem 3: Still might not be hiding!

Strawman 2: Commit to the witness



Problem 1 solved: Succinct proof!

Problem 2: How to verify?

Problem 3: Still might not be hiding!

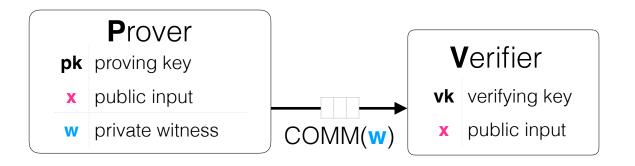
Commitment Schemes

Commit(w; r) \rightarrow cm satisfying the following properties

- **Binding**: For all efficient adv. \mathscr{A} , $\Pr\left[\mathsf{Commit}(w;r) = \mathsf{Commit}(w';r') : (w,r,w',r') \leftarrow \mathscr{A}\right] \approx 0$ (no adv can open commitment to two diff values)
- **Hiding**: For all w, w', and all adv. \mathscr{A} , $\mathscr{A}(\mathsf{Commit}(w; r)) = \mathscr{A}(\mathsf{Commit}(w'; r'))$ (no adv can learn committed value, i.e. comms are indistinguishable)

A standard construction

Strawman 2: Commit to the witness



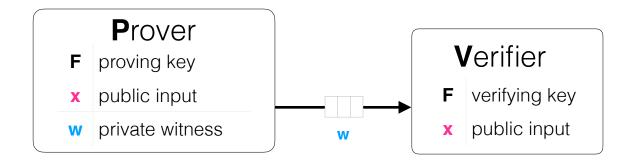
Problem 1 solved: Succinct proof!

Problem 2: How to verify?

Problem 3 solved: COMM hides w!

Performing checks on committed data?

What does V do in the Trivial NP proof?



Evaluate F(x, w)!

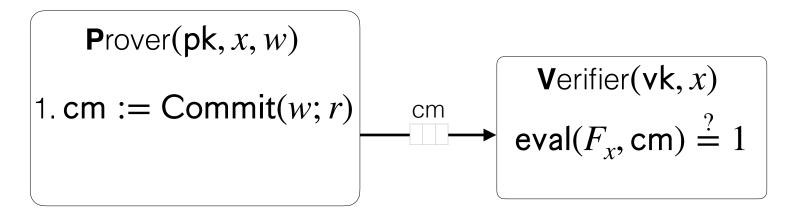
To apply this to our commitment-based protocol, do we need a "fully-homomorphic" commitment?

Homomorphic Commitments?

Pair of algorithms with the following syntax:

- Commit(w; r) \rightarrow cm
 - Commits to the message
- Eval $(F_x, cm) \rightarrow F(x, w)$
 - Evaluates a function over the committed message, and outputs the result in the clear.

Strawman 3: Homomorphic Commitments



Completeness: Follows from that of commitment

Knowledge Soundness: Follows from Trivial NP Proof

Succinct pf size: Follows if eval. proof is succinct

ZK: ???

Problem 1: This would violate ZK: no hiding!

Problem 2: All constructions are inefficient!

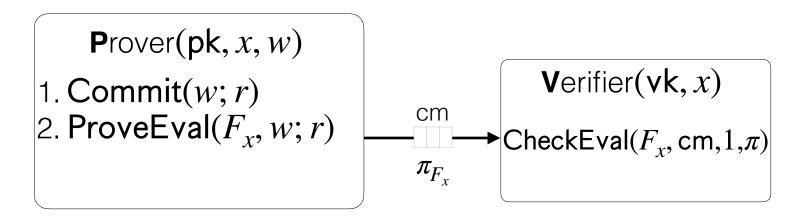
Idea: Ask Prover to help

Triple of algorithms with the following syntax:

- Commit $(m; r) \rightarrow cm$
 - Commits to the message
- ProveEval $(F, m; r) \rightarrow (F(m), \pi)$
 - Returns proof of correct evaluation of F(m)
- CheckEval $(F, \operatorname{cm}, v, \pi) \rightarrow b \in \{0,1\}$
 - Checks that π is a valid proof that F(m) = v, where m is the msg inside \mathbf{cm}

Does this work?

Strawman 4: Functional Commitments



Completeness: Follows from that of (ProveEval, CheckEval)

Knowledge Soundness: Ditto

ZK: Follows from hiding

Succinct pf size: Follows if eval. proof is succinct

Are we done?

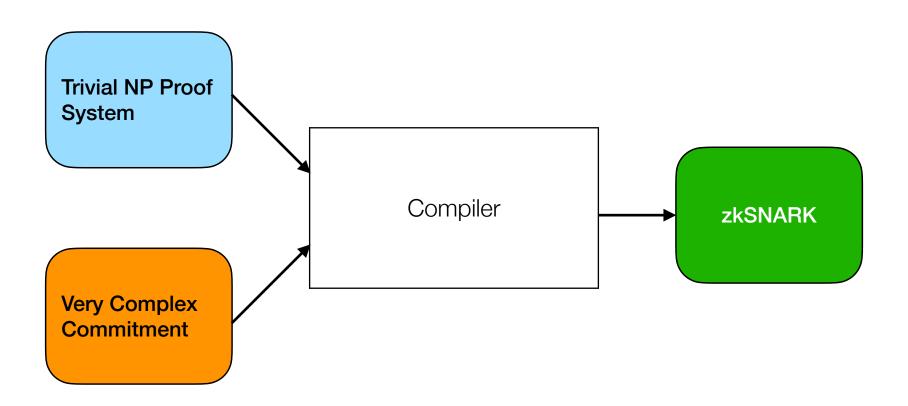
No! We just pushed the problem one layer down!

Problem: This is a zkSNARK for F!

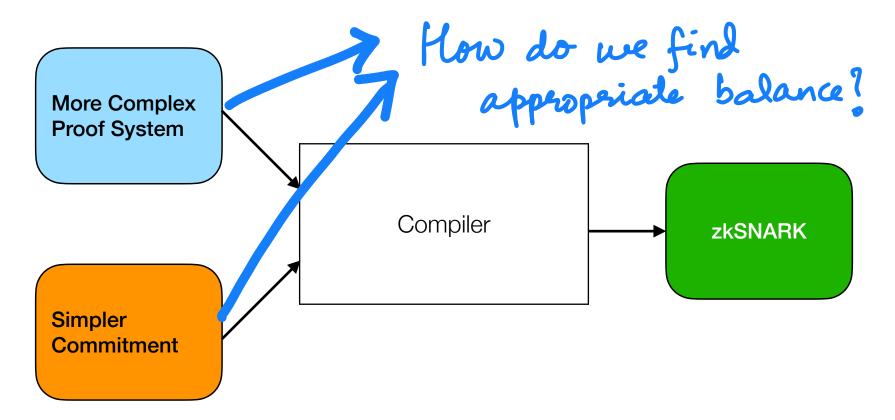
Triple of algorithms with the following syntax:

- Commit $(m; r) \rightarrow cm$
 - Commits to the message
- ProveEval $(F, m; r) \rightarrow (F(m), \pi)$
 - Returns proof of correct evaluation of F(m)
- CheckEval $(F, \operatorname{cm}, v, \pi) \to b \in \{0,1\}$
 - Checks that π is a valid proof that F(m) = v, where m is the msg inside \mathbf{cm}

Let's Reassess Our Status



How about we rebalance?



What commitment schemes exist?

Polynomial commitments:

• $F_z(m)$: Interpret m as univariate poly f(X) in $\mathbb{F}[X]$ and evaluate at z

Multilinear commitments:

e.g.,
$$f(x_1,...,x_k) = x_1x_3 + x_1x_4x_5 + x_7$$

• $F_{\vec{z}}(m)$: Interpret m as multilinear poly f(X) in $\mathbb{F}[\vec{X}]$ and evaluate at \vec{z}

Vector commitments:

• $F_i(m)$: Interpret m as $\underline{\text{vector}}\ v$ in \mathbb{F}^n and return v_i

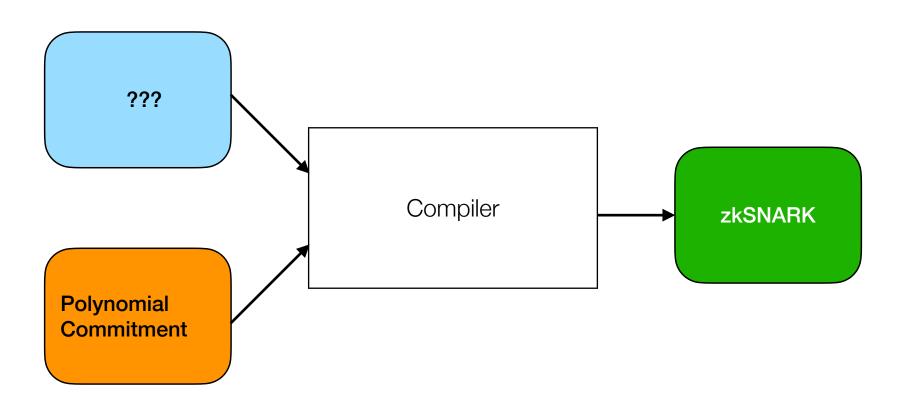
Inner-product commitments:

• $F_{\vec{q}}(m)$: Interpret m as <u>vector</u> \vec{v} in \mathbb{F}^n and return $\langle \vec{v}, \vec{q} \rangle$

Which to pick?

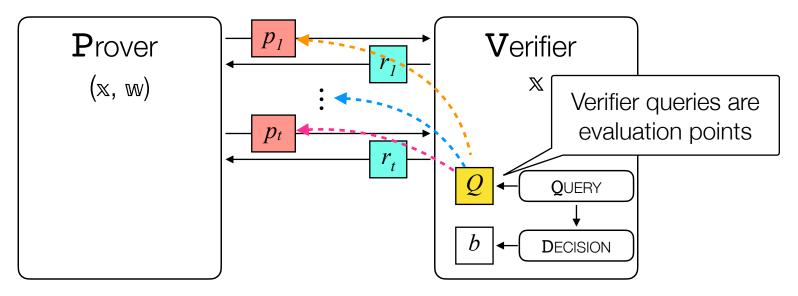
A: Polynomials!

Let's pick polynomials



Polynomial Interactive Oracle Proofs

Polynomial IOPs [GWC19, CHMMVW20, BFS20]



- Completeness: Whenever $(x, w) \in R$, there is a strategy for P that outputs only polynomials, and which causes V to accept.
- **Knowledge Soundness**: Whenever V accepts against a P that outputs **only polynomials**, then P "knows" w such that $(x, w) \in R$.

Majority of innovation is in PIOPs

Flowup: Fractional decomposition-based lookups in quasi-linear time independent of table size

Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and **Updatable Structured Reference Strings**

> Mary Maller marv.maller.15@ucl.ac.uk

Markulf Kohlweiss mkohlwei@ed.ac.uk University of Edinburgh IOHK

University College London

Sean Bowe sean@z.cash Electric Coin Company

Sarah Meikleiohn s.meiklejohn@ucl.ac.uk University College London $\mathcal{P}lon\mathcal{K}$: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of

Knowledge

Ariel Gabizon Function Technologies

Dmitry Khovratovich Ethereum Foundation

Zhenfei Zhang

Espresso Systems

Ariel Gabizon* Aztec

Zachary J. Williamson Aztec

Oana Ciobotaru

Binvi Chen

Espresso Systems

Spartan: Efficient and general-purpose zkSNARKs

Srinath Setty

Microsoft Research

without trusted setup

HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates

Benedikt Bünz

Stanford University.

Espresso Systems

MARLIN:

Preprocessing zkSNARKs with Universal and Updatable SRS

Alessandro Chiesa alexch@berkelev.edu UC Berkeley

Pratyush Mishra pratyush@berkeley.edu UC Berkeley

Yuncong Hu vuncong hu@berkelev.edu UC Berkeley

> Psi Veselv nsi@ucsd.edu UCL

Mary Maller marv.maller.15@ucl.ac.uk UCL

> Nicholas Ward npward@berkeley.edu UC Berkeley

Lunar: a Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions

Caulk: Lookup Arguments in Sublinear Time

Dan Boneh

Stanford University

Arantxa Zapico*1, Vitalik Buterin2, Dmitry Khovratovich2, Mary Maller2, Anca Nitulescu³, and Mark Simkin²

> ¹ Universitat Pompeu Fabra[†] ² Ethereum Foundation[‡] ³ Protocol Labs§

Matteo Campanelli¹, Antonio Faonio², Dario Fiore³, Anaïs Querol^{3,4}, and Hadrián Rodríguez³

plokup: A simplified polynomial protocol for lookup tables

q: *Cached quotients for fast lookups

Baloo: Nearly Optimal Lookup Arguments

Ariel Gabizon Aztec

Zachary J. Williamson Aztec

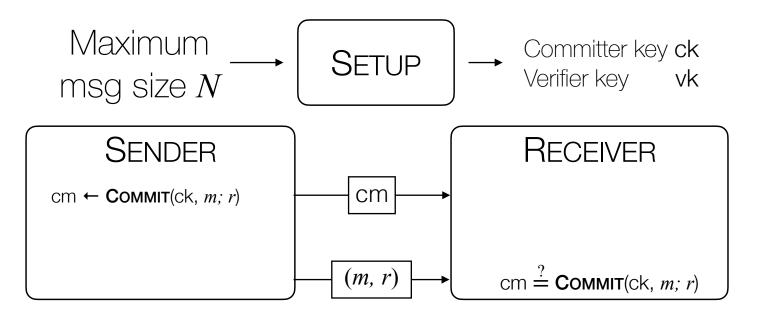
Liam Eagen Blockstream

Dario Fiore IMDEA software institute

Ariel Gabizon Zeta Function Technologies Arantxa Zapico[⋆], Ariel Gabizon³, Dmitry Khovratovich¹, Mary Maller¹, and Carla Ràfols²

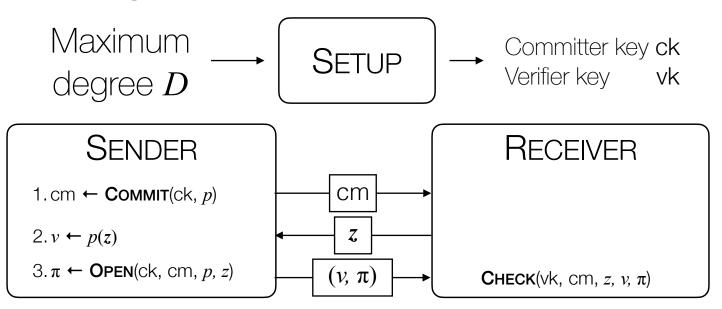
Polynomial Commitments

Recall: Commitment Schemes



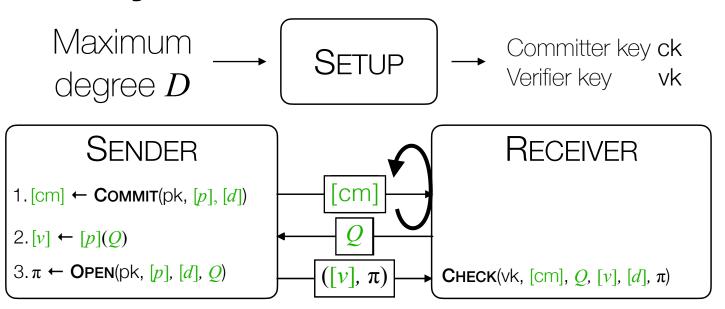
- **Binding**: For $m_1 \neq m_2$, Commit(ck, $m; r_1$) \neq Commit(ck, $m; r_2$), for any r_1, r_2
- **Hiding**: **cm** reveals *no* information about *m* before reveal

Polynomial Commitments



- Completeness: Whenever p(z) = v, **R** accepts.
- Extractability: Whenever R accepts, S's commitment cm "contains" a polynomial p of degree at most D.
- **Hiding**: cm and π reveal *no* information about p other than v

Polynomial Commitments



For efficiency improvements, you need

- Batch commitment
- Batch opening

A selection of constructions

In the last 10 years, several constructions with different

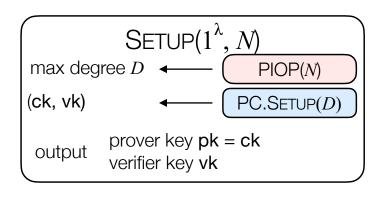
- Cryptographic assumptions
- Prover and verifier efficiency and proof sizes
- Homomorphism and batching properties

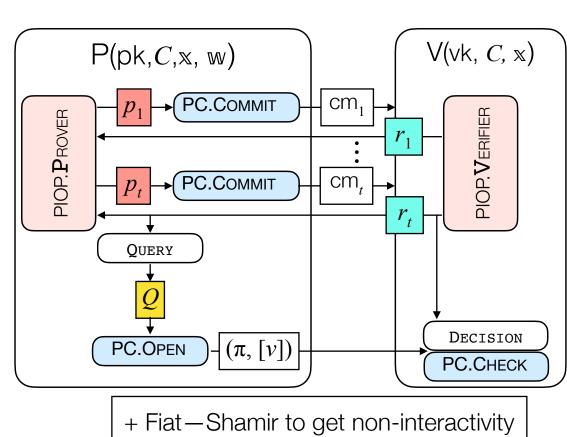
Looking ahead, this enables SNARKs with many different properties

	KZG10	PST13	IPA	Hyrax	Dory	BFS20
crypto	Pairings	Pairings	DLog + RO	DLog + RO	Pairing + RO	GUO + RO
# variables	1	m	1	m	1	1
setup type	Private	Private	Public	Public	Public	Public
commitment size	O(1) G	<i>O</i> (1) G	O(1) G	$O(2^{m/2})$ G	<i>O</i> (1) G	O(1) G
proof size	<i>O</i> (1) G	O(m) G	$O(\log d)$ G	$O(2^{m/2})$ G	$O(\log d)$ G	$O(\log d)$ G
verifier time	<i>O</i> (1) G	O(m) G	O(d) G	$O(2^{m/2})$ G	$O(\log d)$ G	$O(\log d)$ G

PIOP + PC = SNARK

PIOPs + PC Schemes → SNARK





Properties

- Completeness: Follows from completeness of PC and AHP.
- Proof of Knowledge: Whenever V accepts but
 C(x, w) = 0, we can construct either an adversarial prover against
 PIOP, or an adversary that breaks extractability of PC.
- Zero Knowledge: Follows from hiding of PC and bounded-query ZK of AHP.
- Verifier efficiency:
 T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)