Succinct Arguments

Lecture 02: Modern zkSNARK Constructions

Pratyush Mishra
UPenn
Fall 2025

Succinct Non-Interactive Arguments (SNARGS)

Mic94, Groth10, GGPR13, Groth16...
..., GWC19, CHMMVW20, ...

Setup

S .
Q F function %

Prover { | know w s.t. F(x, w) = 1

pk proving key Verifier

x public input > vk verifying key

w private withess O(log(F)) X public input
N /

O(F)

Succinct Non-Interactive Arguments (SNARGS)

e Completeness: If (F,x,w) € £,

k. vk) < Setup(F
Pr|Vivk xmy =1 ; PRV < Setupl))
< P(pk, x,w)

e Soundness: If (F,x,w) & A, for all efficient provers P

k, vk) <« Setup(F
Pr | V(vk,x,n) =1 : (P) - P(F) ~ 0
m < P(pk, x)

What if there’s always a withess?

Soundness: If (F, x, w) & 92, then for all efficient provers P

k, vk) < Setup(F
Pr | V(vk,x,7m) =1 : P) . P ~ ()
n < P(pk, x)

F(x,w) := SHA2(w) = x: there is always a preimage!

F((m, pk), 6) := VerifySignature(pk, m, o) = 1 : if pkis a
valid public key, there is always a valid signature!

Generally many examples where witness always exists!

SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: If V(vk, x, 7) = 1, then P
“knows” w such that (F, x, w) € X

SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: For each efficient P there exists an
extractor K such that)
Vivk, x,7) = 1 (pk, vk) < Setup(F)
Pr A ; 7 <« P(pk, x) ~ 0
(F,x,w) € % w < Es(pk, x)

What about privacy?

0
F(x,w) := SHA2(w) = x:
Does proof reveal info about preimage”

o ?
F((m, pk), o) := VerifySignature(pk,m,o) = 1:
Does proof reveal info about which signature was used?

L . ?
F(x = score, w = credit_hist) := CreditModel(w) = x
Does proof reveal info about credit history?

Verifier is the adversary now!

Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: Proof reveals no information to V other
than validity of w

Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: For all (F, x,w) € R, and all efficient \Y

there exists an simulator Sim such that

(pk, vk) < Setup(F)
Pr | V(vk, x, 7) : _ =Pr |V(vk, x,7n) :
< Sim(pk, x)

(pk, vk) < Setup(F)
m < P(pk,x,w)

Doesn’t this break soundness?

(pk, vk) < Setup(F)
Pr |V(vk,x, 7) : _ = Pr |V(vk,x, 7)) :
< Sim(pk, x)

(pk, vk) < Setup(F’)
n < P(pk, x, w)

Sim has same success probability as honest prover!

This is actually okay: we provide Sim with additional powers!
- Interactive case: Sim can rewind verifier
- Non-interactive case: Sim gets “trapdoor”/secret information

10

What about succinct verification?
Succinctness: | 7| = O(polylog | F'|)

6)
F(x,w) = SHA2'(w) = x -
Do | need to compute 10° hashes to verify proof?

L . ?
F(x = score, w = credit_hist) = CreditModel(w) = x
Do | need to evaluate complex model to verify proof?

Strongly Succinct zkSNARKSs

and Time(V) = O(polylog(| F'|), |x])

Constructing zkSNARKSs

Starting point: Trivial NP Protocol

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1: Non-succinct proof!
Problem 2: Non-succinct verification!
Problem 3: Not hiding at all!

14

Strawman 1: Hash the witness

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!

15

Strawman 2: Commit to the witness

o "
Prover . —)
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!

Commitment Schemes

Commit(w; r) = cm
satistying the following properties

e Binding: For all efficient adv. &,
Pr |Commit(w; r) = Commit(w’; r') : (w,r,w,r) « 9| = 0
(no adv can open commitment to two diff values)

e Hiding: For all w, w’, and all adv. &,
A (Commit(w; r)) = A (Commit(w’; r'))

(no adv can learn committed value, i.e. comms are indistinguishable)

17

A standard construction

Let H be a cryptographic hash function. Then
Commit(w;r) := Hw, r)

IS a commitment scheme

18

Strawman 2: Commit to the witness

o "
Prover . —)
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3 solved: COMM hides w!

Performing checks on
committed data?

What does V do in the Trivial NP proof?

Prover . —)
F proving key Veritier
X public input F verifying key
w private witness w X public input
_ J N J

Evaluate F(x, w)!

To apply this to our commitment-based protocol,
do we need a “fully-homomorphic” commitment?

Homomorphic Commitments?

Pair of algorithms with the following syntax:
e Commit(w;r) > cm
e Commits to the message
e Eval(F,,cm) — F(x,w)
e Fvaluates a function over the committed
message, and outputs the result in the clear.

22

Strawman 3: Homomorphic Commitments

~ M
Prover(pk, x, w)

_ Verifier(vk, x)
1.cm := Commit(w;r), cm)
— —> eval(F,cm) =1

_ J _),

Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof

Succinct pf size: Follows if eval. proof is succinct
ZK: ???

Problem 1: This would violate ZK: no hiding!
Problem 2: All constructions are inefficient!

23

ldea: Ask Prover to help

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm

Does this work?

24

Strawman 4: Functional Commitments

e)
Prover(pk, x, w)
1. Commit(w: 7) Verifier(vk, x)
. cm
2. ProveEval(F,w;r) —> CheckEval(F,, cm,1,7)
]ZFx
N ™) J

Completeness: Follows from that of (ProveEval, CheckEval)
Knowledge Soundness: Ditto

ZK: Follows from hiding
Succinct pf size: Follows if eval. proof is succinct

Are we done?

No! We just pushed the problem one layer down!

25

Problem: This is a zkSNARK for F

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm

26

Let’s Reassess Our Status

Trivial NP Proof
System

Compiler

How about we rebalance?

More Complex
Proof System

Compiler

What commitment schemes exist?

Polynomial commitments:
« F.(m): Interpret m as univariate poly f(X) in [F[X] and evaluate at z

Multilinear commitments: €.0. f(Xpr e Xpe) = X123+ X,24%5 + X
« F=(m): Interpret m as multilinear poly f(X) in F[X] and evaluate at Z

Vector commitments:
= F;(m): Interpret m as vector vin [F"* and return v;

Inner-product commitments:
« Fz(m): Interpret m as vector Vin F" and return (V, g)

Which to pick?

29

A: Polynomials!
@ Benedikt Biinz

Reed - Solomon code: Polynomial
Zero-Knwoledge Proof Systems: Polynomials
Secret Sharing: Polynomial Evaluations
Identity Testing: Polynomials equal?

FFTs: Polynomials

FRI: FFTs-> Polynomials
SNARK: Polynomials

STARK: SNARK

Security Parameter: Polynomial
Lagrange: Polynomial

30

Let’s pick polynomials

-

Compiler

L

&

Polynomial
Interactive
Oracle
Proofs

Polynomial |OPS (awcie, cHmmvwzo, BFs20)

Prover

(x, w)

.

J

P

A

v

Pt

A

-...
~

\§

Verifier 1

X
Verifier queries are

evaluation points

4:(QUERY J

'

4—(DECISION)

_/

e Completeness: \Whenever (x, w) € R, there is a strategy for P that
outputs only polynomials, and which causes V to accepit.

e Knowledge Soundness: \Whenever V accepts against a P that
outputs only polynomials, then P “knows” w such that (x, w) € R.

33

Majority of innovation is in PIOPs

Flﬂﬂlill]]: Fractional decomposition-based lookups in

Sonic: Zero-Knowledge SNARKSs from Linear-Size Universal and quasi-linear time independent of table size

Updatable Structured Reference Strings Plonk: Permutations over Lagrange-bases for

. . . Ariel Gabi Dmitry Kh tovich
Mary Maller Sean Bowe Oecumenical Noninteractive arguments of ~ _ Ariel Gabizon Ty Baoviazovie

mary.maller.15@uclac.uk sean@z.cash Function Technologies Ethereum Foundation
University College London Electric Coin Company Knowledge - . IO

Markulf Kohlweiss Sarah Meiklejohn

mkohlwei@ed.ac.uk s.meiklejohn@ucl.ac.uk

Uni ity of Edinb Uni ity College Lond . . S .

mvers‘?&_n(nburgh niversity College London Ariel Gabizon* Zachary J. Williamson Oana Ciobotaru

Aztec Aztec

Spartan: Efficient and general-purpose ZkSNARKs HyperPlonk: Plonk with Linear-Time Prover and High-Degree

MARLIN® without trusted setup Custom Gates
PI'CPI'OCCSSIIlg zkSNARKs Srinath Setty Binyi Chen Benedikt Biinz Dan Boneh Zhenfei Zhang
Wlth Universal and Updatable SRS Microsoft Research Espresso Systems Stanford University, Stanford University Espresso Systems
Espresso Systems
Alessandro Chiesa Yuncong Hu Mary Maller
alexch@berkeley.edu yuncong_hu@berkeley.edu mary.maller.15@ucl.ac.uk
UC Berkeley UC Berkeley ucL . Caulk: Lookup Arguments in Sublinear Time
Lunar: a Toolbox for More Efficient p AIg
Prat}:;ih l:hlshra ; PS(; Vezel); ngzslai\yam ’ Universal and Updatable zkSNARKSs Arantxa Zapico*!, Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
pratyushberkeley. edu psifucsd.edu npwarcberke ey. edu and Commit-and-Prove Extensions Anca Nitulescu®, and Mark Simkin?
UC Berkeley UCL UC Berkeley

I Universitat Pompeu Fabral
2 Ethereum Foundation?
- - - 3 Protocol Labs’

Matteo Campanelli', Antonio Faonio?, Dario Fiore®, Anais Querol®*, and Hadrién Rodriguez®

Jokup: A simplified polynomial protocol for (¢:* Cached quotients for fast lookups

lookup tables
Baloo: Nearly Optimal Lookup Arguments

Liam Eagen Dario Fiore
Ariel Gabizon Zachary J. Williamson Blockstream IMDEA software institute Arantxa Zapico*, Ariel Gabizon®, Dmitry Khovratovich!, Mary Maller', and Carla Rafols?
Aztec Aztec Ariel Gabizon

Zeta Function Technologies 34

Polynomial
Commitments

Recall: Commitment Schemes

NMaximum i
— | SgTUP | — Committer key ck

msg SIZ@ N Verifier key vk
() 4 N
SENDER RECEIVER
cm « ComMmIT(ck, m; r) cm >
.) (m, r) " cm Z commiT(ck, m; r)

e Binding: For m; # m,, Commit(ck, m; r;) # Commit(ck, m; r,), for any
11,1

® Hiding: cm reveals no information about m before reveal

Polynomial Commitments

Maximum Committer key ck
SETUP Verifier key vk
degree D y
(N\ 4
SENDER RECEIVER
1.cm « CoMMIT(cK, p) cm >
2.v < p(2) 3
3.m < OPEN(ck, cm, p, z) (v,) > CHECK(Vk, cm, z, v,)

e Completeness: \Whenever p(z) = v, R accepts.

e Extractability: \Whenever R accepts, S8’s commitment cm
“contains” a polynomial p of degree at most D.

® Hiding: cm and 7 reveal no information about p other than v

Polynomial Commitments

Committer key ck
Verifier key vk

NMaximum
— | SETUP | —
degree D
SENDER
1.[cm] « CoMmIT(pk, [p], [4]) [cm]
2.[v] + [pI(0) 0
3.1 « OPEN(pK, [p], [d], O) ([v], n)

N\

RECEIVER

CHECK(VK, [cm], O, [v], [d], =)

J

For efficiency improvements, you need

e Batch commitment

e Batch opening

38

A selection of constructions

In the last 10 years, several constructions with different
® Cryptographic assumptions
® Prover and verifier efficiency and proof sizes

® Homomorphism and batching properties

Looking ahead, this enables SNARKs with many different properties

I KZG10 I PST13 I IPA I Hyrax I Dory I BFS20
crypto Pairings Pairings DLog + RO DLog + RO Pairing + RO GUO + RO
variables 1 m 1

setup type Private Private

m

commitment
size

1 1

proof size

O(m) G O(log d) G _ O(log d) G O(log d) G

verifier time Oo(m) G

39

PIOP + PC = SNARK

PIOPs + PC Schemes @ SNARK

a) a)
P(pk,C,x, w) V(vk, C, x)
(- —2; —»(PC.COMMIT)-_ cm, (» f?\
4) = < [L
SeTuP(1*, N) g 1" .
degree D ! ‘ .
max degree 4—(PIOP(N)) & D, —>(PC.COMMIT)__ cm, b» w
(ck, vK) — (PC.SETUP(D)) O e roel o
tout prover key pk = ck
kou bu verifier key vk) I
0
* v
(PC.OPEN)— (m, [v]) =(DECISTON)
L . L (PC.CHECK)j

+ Fiat—Shamir to get non-interactivity

41

Properties

e Completeness: Follows from completeness of PC and AHP.

e Proof of Knowledge: \Whenever V accepts but
C(X, W) = 0, we can construct either an adversarial prover against
PIOP, or an adversary that breaks extractability of PC.

e Zero Knowledge: Follows from hiding of PC and bounded-query ZK
of AHP.

e Verifier efficiency:
T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)

42

