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Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[                   ]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk
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Succinct Non-Interactive Arguments (SNARGs)

• Completeness: If , 

 . 

• Soundness: If , for all efficient provers  

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w) ] = 1

(F, x, w) ∉ ℛ P̃

Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x) ] ≈ 0

|π | = O(polylog |F | )
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What if there’s always a witness?

•  : there is always a preimage! 

•  :  if pk is a 
valid public key, there is always a valid signature! 

• Generally many examples where witness always exists!

F(x, w) := 𝖲𝖧𝖠𝟤(w) ?= x

F((m, 𝗉𝗄), σ) := 𝖵𝖾𝗋𝗂𝖿𝗒𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾(𝗉𝗄, m, σ) ?= 1

Soundness: If , then for all efficient provers  (F, x, w) ∉ ℛ P̃

Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x) ] ≈ 0
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SNARGs of Knowledge (SNARKs)
• Completeness: For all , 

 . 

• Knowledge Soundness: If , then   
“knows”  such that  

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w) ] = 1

V(𝗏𝗄, x, π) = 1 P̃
w (F, x, w) ∈ ℛ

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

|π | = O(log |F | )
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SNARGs of Knowledge (SNARKs)
• Completeness: For all , 

 . 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that 

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w) ] = 1

P̃
E

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

|π | = O(log |F | )



7

What about privacy?
•  :  

Does proof reveal info about preimage? 

•  :  
Does proof reveal info about which signature was used? 

•  
Does proof reveal info about credit history?

F(x, w) := 𝖲𝖧𝖠𝟤(w) ?= x

F((m, 𝗉𝗄), σ) := 𝖵𝖾𝗋𝗂𝖿𝗒𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾(𝗉𝗄, m, σ) ?= 1

F(x = 𝗌𝖼𝗈𝗋𝖾, w = 𝖼𝗋𝖾𝖽𝗂𝗍_𝗁𝗂𝗌𝗍) := 𝖢𝗋𝖾𝖽𝗂𝗍𝖬𝗈𝖽𝖾𝗅(w) ?= x

Verifier is the adversary now!
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Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: Proof reveals no information to  other 
than validity of  

 

• Succinctness: 

(F, x, w) ∈ ℛ

P̃
E

V
w

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
|π | = O(log |F | )
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Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: For all , and all efficient 
there exists an simulator  such that 

 

• Succinctness: 

(F, x, w) ∈ ℛ

P̃
E

(F, x, w) ∈ R Ṽ
𝖲𝗂𝗆

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
|π | = O(log |F | )
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Doesn’t this break soundness?

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
 has same success probability as honest prover!𝖲𝗂𝗆

This is actually okay: we provide Sim with additional powers!
• Interactive case: Sim can rewind verifier
• Non-interactive case: Sim gets “trapdoor”/secret information
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What about succinct verification?

•  :  
Do I need to compute  hashes to verify proof? 

•  
Do I need to evaluate complex model to verify proof?

F(x, w) = 𝖲𝖧𝖠𝟤106
(w) ?= x

106

F(x = 𝗌𝖼𝗈𝗋𝖾, w = 𝖼𝗋𝖾𝖽𝗂𝗍_𝗁𝗂𝗌𝗍) = 𝖢𝗋𝖾𝖽𝗂𝗍𝖬𝗈𝖽𝖾𝗅(w) ?= x

Succinctness: |π | = O(polylog |F | )
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Strongly Succinct zkSNARKs
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: For all , and all efficient 
there exists an simulator  such that 

 

• Succinctness:   
                          and 

(F, x, w) ∈ ℛ

P̃
E

(F, x, w) ∈ R Ṽ
𝖲𝗂𝗆

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
|π | = O(log |F | )

𝖳𝗂𝗆𝖾(V) = O(polylog( |F | ), |x | )



Constructing zkSNARKs
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Starting point: Trivial NP Protocol

w

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: Non-succinct proof! 
Problem 2: Non-succinct verification! 
Problem 3: Not hiding at all!
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Strawman 1: Hash the witness

H(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!
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Strawman 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!



ZKP MOOC

  
satisfying the following properties 

• Binding: For all efficient adv. , 
  

(no adv can open commitment to two diff values) 

• Hiding: For all , and all adv. , 
 

(no adv can learn committed value, i.e. comms are indistinguishable)

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(w; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼) : (w, r, w′￼, r′￼) ← 𝒜] ≈ 0

w, w′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼))

17

Commitment Schemes



ZKP MOOC

A standard construction

Let  be a cryptographic hash function. Then  
  

is a commitment scheme

H
𝖢𝗈𝗆𝗆𝗂𝗍(w; r) := H(w, r)

18
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Strawman 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3 solved: COMM hides w!



Performing checks on  
committed data?
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What does V do in the Trivial NP proof?

w

F proving key

x public input

w private witness

Prover

F verifying key

x public input

Verifier

Evaluate F(x, w)!

To apply this to our commitment-based protocol, 
do we need a “fully-homomorphic” commitment?



ZKP MOOC

Pair of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Evaluates a function over the committed 
message, and outputs the result in the clear.

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝖤𝗏𝖺𝗅(Fx, 𝖼𝗆) → F(x, w)

22

Homomorphic Commitments?
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Strawman 3: Homomorphic Commitments

cm1. 𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(w; r)

Prover(𝗉𝗄, x, w)

𝖾𝗏𝖺𝗅(Fx, 𝖼𝗆) ?= 1

Verifier(𝗏𝗄, x)

               Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof
            Succinct pf size: Follows if eval. proof is succinct 
                                   ZK: ???

Problem 1: This would violate ZK: no hiding! 
Problem 2: All constructions are inefficient!



ZKP MOOC

Triple of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Returns proof of correct evaluation of  
•  

• Checks that  is a valid proof that , where 
 is the msg inside 

𝖢𝗈𝗆𝗆𝗂𝗍(m; r) → 𝖼𝗆

𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(F, m; r) → (F(m), π)
F(m)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(F, 𝖼𝗆, v, π) → b ∈ {0,1}
π F(m) = v

m 𝖼𝗆

24

Idea: Ask Prover to help

Does this work?
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Strawman 4: Functional Commitments

cm
1.  
2.

𝖢𝗈𝗆𝗆𝗂𝗍(w; r)
𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(Fx, w; r)

Prover(𝗉𝗄, x, w)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(Fx, 𝖼𝗆,1,π)

Verifier(𝗏𝗄, x)

               Completeness: Follows from that of 
Knowledge Soundness: Ditto
                                   ZK: Follows from hiding
             Succinct pf size: Follows if eval. proof is succinct

(𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅, 𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅)

πFx

Are we done?
No! We just pushed the problem one layer down!



ZKP MOOC

Triple of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Returns proof of correct evaluation of  
•  

• Checks that  is a valid proof that , where 
 is the msg inside 

𝖢𝗈𝗆𝗆𝗂𝗍(m; r) → 𝖼𝗆

𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(F, m; r) → (F(m), π)
F(m)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(F, 𝖼𝗆, v, π) → b ∈ {0,1}
π F(m) = v

m 𝖼𝗆
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Problem: This is a zkSNARK for !F



27

Trivial NP Proof 
System

Very Complex 
Commitment

Compiler zkSNARK

Let’s Reassess Our Status



How about we rebalance?

28

More Complex 
Proof System

Simpler 
Commitment

Compiler zkSNARK



What commitment schemes exist?
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Polynomial commitments:  
▪ : Interpret  as univariate poly   in  and evaluate at  

Multilinear commitments:  
▪ : Interpret  as multilinear poly   in  and evaluate at     

Vector commitments:  
▪ : Interpret  as vector   in  and return  

Inner-product commitments:  
▪ : Interpret  as vector   in  and return 

Fz(m) m f(X ) 𝔽[X ] z

F ⃗z(m) m f(X ) 𝔽[ ⃗X ] ⃗z

Fi(m) m v 𝔽 n vi

F ⃗q(m) m ⃗v 𝔽 n ⟨ ⃗v, ⃗q⟩

e.g.,   𝑓(𝑥1, …, 𝑥𝑘) = 𝑥1𝑥3 + 𝑥1𝑥4𝑥5 + 𝑥7

Which to pick?
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A: Polynomials!



Let’s pick polynomials

31

???

Polynomial 
Commitment

Compiler zkSNARK



Polynomial  
Interactive 
Oracle 
Proofs



Polynomial IOPs [GWC19, CHMMVW20, BFS20]

Prover 
(𝕩, 𝕨) 

 
 
 
 
 

Verifier 
𝕩 
 
 
 
 
 

p1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever (𝕩, 𝕨) ∈ R, there is a strategy for P that  
outputs only polynomials, and which causes V to accept. 

• Knowledge Soundness: Whenever V accepts against a P that  
outputs only polynomials, then P “knows” 𝕨 such that (𝕩, 𝕨) ∈ R.

pt
rt

Verifier queries are 
evaluation points

33
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Majority of innovation is in PIOPs



Polynomial 
Commitments



Recall: Commitment Schemes

SENDER 
 

RECEIVER 
 
 
 

cm

SETUP Maximum 
msg size N

Committer key ck 
Verifier key       vk

cm ← COMMIT(ck, m; r)

(m, r) cm  COMMIT(ck, m; r)?=

• Binding: For , for any 



• Hiding: cm reveals no information about m before reveal

m1 ≠ m2, Commit(ck, m; r1) ≠ Commit(ck, m; r2)
r1, r2

36



Polynomial Commitments

SENDER 
 
 
 

RECEIVER 
 
 
 

cm
z

SETUP Maximum 
degree D

Committer key ck 
Verifier key       vk

1.cm ← COMMIT(ck, p)

(v, π)
2. v ← p(z)

3.π ← OPEN(ck, cm, p, z) CHECK(vk, cm, z, v, π)

• Completeness: Whenever p(z) = v, R accepts. 
• Extractability: Whenever R accepts, S’s commitment cm 

“contains” a polynomial p of degree at most D.


• Hiding: cm and π reveal no information about p other than v
37



RECEIVER 
 
 
 CHECK(vk, [cm], Q, [v], [d], π)

SENDER 
 
 
 

2. [v] ← [p](Q) z
3.π ← OPEN(pk, [p], [d], Q)

Q

1. [cm] ← COMMIT(pk, [p], [d]) cm[cm]

Polynomial Commitments
SETUP Maximum 

degree D
Committer key ck 
Verifier key       vk

(v, π)

For efficiency improvements, you need

• Batch commitment • Batch opening

([v], π)

38
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A selection of constructions

KZG10 PST13 IPA Hyrax Dory BFS20

crypto Pairings Pairings DLog + RO DLog + RO Pairing + RO GUO + RO

# variables 1 m 1 m 1 1

setup type Private Private Public Public Public Public

commitment 
size O(1) G O(1) G O(1) G              G O(1) G O(1) G

proof size O(1) G O(m) G O(log d) G              G O(log d) G O(log d) G

verifier time O(1) G O(m) G O(d) G              G O(log d) G O(log d) G

O(2m /2)

O(2m /2)

O(2m /2)

In the last 10 years, several constructions with different 

• Cryptographic assumptions 

• Prover and verifier efficiency and proof sizes 

• Homomorphism and batching properties 

Looking ahead, this enables SNARKs with many different properties



PIOP + PC = SNARK



V(vk, C, 𝕩) 
 
 
 
 
 

P(pk,C,𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

41

Q

SETUP(1λ, N) 
 
 
 

max degree D
(ck, vk)

PIOP(N) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP(D) 

PIOPs + PC Schemes → SNARK 

+ Fiat—Shamir to get non-interactivity
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Properties

• Completeness: Follows from completeness of PC and AHP. 

• Proof of Knowledge: Whenever V accepts but  
 C(𝕩, 𝕨) = 0, we can construct either an adversarial prover against 
PIOP, or an adversary that breaks extractability of PC. 

• Zero Knowledge: Follows from hiding of PC and bounded-query ZK 
of AHP.  

• Verifier efficiency: 
       T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)


