
Pratyush Mishra
UPenn
Fall 2025

Succinct Arguments

Lecture 02: Modern zkSNARK Constructions

2

Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk

3

Succinct Non-Interactive Arguments (SNARGs)

• Completeness: If ,

 .

• Soundness: If , for all efficient provers

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w)] = 1

(F, x, w) ∉ ℛ P̃

Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)] ≈ 0

|π | = O(polylog |F |)

4

What if there’s always a witness?

• : there is always a preimage!

• : if pk is a
valid public key, there is always a valid signature!

• Generally many examples where witness always exists!

F(x, w) := 𝖲𝖧𝖠𝟤(w) ?= x

F((m, 𝗉𝗄), σ) := 𝖵𝖾𝗋𝗂𝖿𝗒𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾(𝗉𝗄, m, σ) ?= 1

Soundness: If , then for all efficient provers (F, x, w) ∉ ℛ P̃

Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)] ≈ 0

5

SNARGs of Knowledge (SNARKs)
• Completeness: For all ,

 .

• Knowledge Soundness: If , then
“knows” such that

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w)] = 1

V(𝗏𝗄, x, π) = 1 P̃
w (F, x, w) ∈ ℛ

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

|π | = O(log |F |)

6

SNARGs of Knowledge (SNARKs)
• Completeness: For all ,

 .

• Knowledge Soundness: For each efficient there exists an
extractor such that

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(𝗏𝗄, x, π) = 1 :

(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)
π ← P(𝗉𝗄, x, w)] = 1

P̃
E

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

|π | = O(log |F |)

7

What about privacy?
• :

Does proof reveal info about preimage?

• :
Does proof reveal info about which signature was used?

•
Does proof reveal info about credit history?

F(x, w) := 𝖲𝖧𝖠𝟤(w) ?= x

F((m, 𝗉𝗄), σ) := 𝖵𝖾𝗋𝗂𝖿𝗒𝖲𝗂𝗀𝗇𝖺𝗍𝗎𝗋𝖾(𝗉𝗄, m, σ) ?= 1

F(x = 𝗌𝖼𝗈𝗋𝖾, w = 𝖼𝗋𝖾𝖽𝗂𝗍_𝗁𝗂𝗌𝗍) := 𝖢𝗋𝖾𝖽𝗂𝗍𝖬𝗈𝖽𝖾𝗅(w) ?= x

Verifier is the adversary now!

8

Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: Proof reveals no information to other
than validity of

• Succinctness:

(F, x, w) ∈ ℛ

P̃
E

V
w

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← 𝖲𝗂𝗆(𝗉𝗄, x)] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)]
|π | = O(log |F |)

9

Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: For all , and all efficient
there exists an simulator such that

• Succinctness:

(F, x, w) ∈ ℛ

P̃
E

(F, x, w) ∈ R Ṽ
𝖲𝗂𝗆

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← 𝖲𝗂𝗆(𝗉𝗄, x)] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)]
|π | = O(log |F |)

10

Doesn’t this break soundness?

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← 𝖲𝗂𝗆(𝗉𝗄, x)] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)]
 has same success probability as honest prover!𝖲𝗂𝗆

This is actually okay: we provide Sim with additional powers!
• Interactive case: Sim can rewind verifier
• Non-interactive case: Sim gets “trapdoor”/secret information

11

What about succinct verification?

• :
Do I need to compute hashes to verify proof?

•
Do I need to evaluate complex model to verify proof?

F(x, w) = 𝖲𝖧𝖠𝟤106
(w) ?= x

106

F(x = 𝗌𝖼𝗈𝗋𝖾, w = 𝖼𝗋𝖾𝖽𝗂𝗍_𝗁𝗂𝗌𝗍) = 𝖢𝗋𝖾𝖽𝗂𝗍𝖬𝗈𝖽𝖾𝗅(w) ?= x

Succinctness: |π | = O(polylog |F |)

12

Strongly Succinct zkSNARKs
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: For all , and all efficient
there exists an simulator such that

• Succinctness:
 and

(F, x, w) ∈ ℛ

P̃
E

(F, x, w) ∈ R Ṽ
𝖲𝗂𝗆

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← 𝖲𝗂𝗆(𝗉𝗄, x)] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)]
|π | = O(log |F |)

𝖳𝗂𝗆𝖾(V) = O(polylog(|F |), |x |)

Constructing zkSNARKs

14

Starting point: Trivial NP Protocol

w

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: Non-succinct proof! 
Problem 2: Non-succinct verification! 
Problem 3: Not hiding at all!

15

Strawman 1: Hash the witness

H(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!

16

Strawman 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!

ZKP MOOC

satisfying the following properties

• Binding: For all efficient adv. ,

(no adv can open commitment to two diff values)

• Hiding: For all , and all adv. ,

(no adv can learn committed value, i.e. comms are indistinguishable)

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(w; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼) : (w, r, w′￼, r′￼) ← 𝒜] ≈ 0

w, w′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼))

17

Commitment Schemes

ZKP MOOC

A standard construction

Let be a cryptographic hash function. Then

is a commitment scheme

H
𝖢𝗈𝗆𝗆𝗂𝗍(w; r) := H(w, r)

18

19

Strawman 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3 solved: COMM hides w!

Performing checks on  
committed data?

21

What does V do in the Trivial NP proof?

w

F proving key

x public input

w private witness

Prover

F verifying key

x public input

Verifier

Evaluate F(x, w)!

To apply this to our commitment-based protocol, 
do we need a “fully-homomorphic” commitment?

ZKP MOOC

Pair of algorithms with the following syntax:
•

• Commits to the message
•

• Evaluates a function over the committed
message, and outputs the result in the clear.

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝖤𝗏𝖺𝗅(Fx, 𝖼𝗆) → F(x, w)

22

Homomorphic Commitments?

23

Strawman 3: Homomorphic Commitments

cm1. 𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(w; r)

Prover(𝗉𝗄, x, w)

𝖾𝗏𝖺𝗅(Fx, 𝖼𝗆) ?= 1

Verifier(𝗏𝗄, x)

 Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof
 Succinct pf size: Follows if eval. proof is succinct 
 ZK: ???

Problem 1: This would violate ZK: no hiding! 
Problem 2: All constructions are inefficient!

ZKP MOOC

Triple of algorithms with the following syntax:
•

• Commits to the message
•

• Returns proof of correct evaluation of
•

• Checks that is a valid proof that , where
 is the msg inside

𝖢𝗈𝗆𝗆𝗂𝗍(m; r) → 𝖼𝗆

𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(F, m; r) → (F(m), π)
F(m)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(F, 𝖼𝗆, v, π) → b ∈ {0,1}
π F(m) = v

m 𝖼𝗆

24

Idea: Ask Prover to help

Does this work?

25

Strawman 4: Functional Commitments

cm
1.
2.

𝖢𝗈𝗆𝗆𝗂𝗍(w; r)
𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(Fx, w; r)

Prover(𝗉𝗄, x, w)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(Fx, 𝖼𝗆,1,π)

Verifier(𝗏𝗄, x)

 Completeness: Follows from that of
Knowledge Soundness: Ditto
 ZK: Follows from hiding
 Succinct pf size: Follows if eval. proof is succinct

(𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅, 𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅)

πFx

Are we done?
No! We just pushed the problem one layer down!

ZKP MOOC

Triple of algorithms with the following syntax:
•

• Commits to the message
•

• Returns proof of correct evaluation of
•

• Checks that is a valid proof that , where
 is the msg inside

𝖢𝗈𝗆𝗆𝗂𝗍(m; r) → 𝖼𝗆

𝖯𝗋𝗈𝗏𝖾𝖤𝗏𝖺𝗅(F, m; r) → (F(m), π)
F(m)

𝖢𝗁𝖾𝖼𝗄𝖤𝗏𝖺𝗅(F, 𝖼𝗆, v, π) → b ∈ {0,1}
π F(m) = v

m 𝖼𝗆

26

Problem: This is a zkSNARK for !F

27

Trivial NP Proof
System

Very Complex
Commitment

Compiler zkSNARK

Let’s Reassess Our Status

How about we rebalance?

28

More Complex
Proof System

Simpler
Commitment

Compiler zkSNARK

What commitment schemes exist?

29

Polynomial commitments:
▪ : Interpret as univariate poly in and evaluate at

Multilinear commitments:
▪ : Interpret as multilinear poly in and evaluate at

Vector commitments:
▪ : Interpret as vector in and return

Inner-product commitments:
▪ : Interpret as vector in and return

Fz(m) m f(X) 𝔽[X] z

F ⃗z(m) m f(X) 𝔽[⃗X] ⃗z

Fi(m) m v 𝔽 n vi

F ⃗q(m) m ⃗v 𝔽 n ⟨ ⃗v, ⃗q⟩

e.g., 𝑓(𝑥1, …, 𝑥𝑘) = 𝑥1𝑥3 + 𝑥1𝑥4𝑥5 + 𝑥7

Which to pick?

30

A: Polynomials!

Let’s pick polynomials

31

???

Polynomial
Commitment

Compiler zkSNARK

Polynomial
Interactive
Oracle
Proofs

Polynomial IOPs [GWC19, CHMMVW20, BFS20]

Prover
(𝕩, 𝕨)

Verifier
𝕩

p1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever (𝕩, 𝕨) ∈ R, there is a strategy for P that
outputs only polynomials, and which causes V to accept.

• Knowledge Soundness: Whenever V accepts against a P that
outputs only polynomials, then P “knows” 𝕨 such that (𝕩, 𝕨) ∈ R.

pt
rt

Verifier queries are
evaluation points

33

34

Majority of innovation is in PIOPs

Polynomial
Commitments

Recall: Commitment Schemes

SENDER

RECEIVER

cm

SETUP Maximum
msg size N

Committer key ck
Verifier key vk

cm ← COMMIT(ck, m; r)

(m, r) cm COMMIT(ck, m; r)?=

• Binding: For , for any

• Hiding: cm reveals no information about m before reveal

m1 ≠ m2, Commit(ck, m; r1) ≠ Commit(ck, m; r2)
r1, r2

36

Polynomial Commitments

SENDER

RECEIVER

cm
z

SETUP Maximum
degree D

Committer key ck
Verifier key vk

1.cm ← COMMIT(ck, p)

(v, π)
2. v ← p(z)

3.π ← OPEN(ck, cm, p, z) CHECK(vk, cm, z, v, π)

• Completeness: Whenever p(z) = v, R accepts.
• Extractability: Whenever R accepts, S’s commitment cm

“contains” a polynomial p of degree at most D.

• Hiding: cm and π reveal no information about p other than v
37

RECEIVER

 CHECK(vk, [cm], Q, [v], [d], π)

SENDER

2. [v] ← [p](Q) z
3.π ← OPEN(pk, [p], [d], Q)

Q

1. [cm] ← COMMIT(pk, [p], [d]) cm[cm]

Polynomial Commitments
SETUP Maximum

degree D
Committer key ck
Verifier key vk

(v, π)

For efficiency improvements, you need

• Batch commitment • Batch opening

([v], π)

38

39

A selection of constructions

KZG10 PST13 IPA Hyrax Dory BFS20

crypto Pairings Pairings DLog + RO DLog + RO Pairing + RO GUO + RO

variables 1 m 1 m 1 1

setup type Private Private Public Public Public Public

commitment
size O(1) G O(1) G O(1) G G O(1) G O(1) G

proof size O(1) G O(m) G O(log d) G G O(log d) G O(log d) G

verifier time O(1) G O(m) G O(d) G G O(log d) G O(log d) G

O(2m /2)

O(2m /2)

O(2m /2)

In the last 10 years, several constructions with different

• Cryptographic assumptions

• Prover and verifier efficiency and proof sizes

• Homomorphism and batching properties

Looking ahead, this enables SNARKs with many different properties

PIOP + PC = SNARK

V(vk, C, 𝕩)

P(pk,C,𝕩, 𝕨)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

41

Q

SETUP(1λ, N)

max degree D
(ck, vk)

PIOP(N)

prover key pk = ck 
verifier key vkoutput

PC.SETUP(D)

PIOPs + PC Schemes → SNARK

+ Fiat—Shamir to get non-interactivity

42

Properties

• Completeness: Follows from completeness of PC and AHP.

• Proof of Knowledge: Whenever V accepts but
 C(𝕩, 𝕨) = 0, we can construct either an adversarial prover against
PIOP, or an adversary that breaks extractability of PC.

• Zero Knowledge: Follows from hiding of PC and bounded-query ZK
of AHP.

• Verifier efficiency:
 T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)

