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Succinct Non-Interactive Arguments (SNARGS)

Mic94, Groth10, GGPR13, Groth16...
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Succinct Non-Interactive Arguments (SNARGS)

e Completeness: If (F,x,w) € £,

k. vk) < Setup(F
Pr|Vivk xmy =1 ; PRV < Setupl))
< P(pk, x,w)

e Soundness: If (F,x,w) & A, for all efficient provers P

k, vk) <« Setup(F
Pr | V(vk,x,n) =1 : (P ) - P(F) ~ 0
m < P(pk, x)




What if there’s always a withess?

Soundness: If (F, x, w) & 92, then for all efficient provers P

k, vk) < Setup(F
Pr | V(vk,x,7m) =1 : P ) . P ~ ()
n < P(pk, x)

F(x,w) := SHA2(w) = x: there is always a preimage!

F((m, pk), 6) := VerifySignature(pk, m, o) = 1 : if pkis a
valid public key, there is always a valid signature!

Generally many examples where witness always exists!



SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: If V(vk, x, 7) = 1, then P
“knows” w such that (F, x, w) € X



SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: For each efficient P there exists an
extractor K such that )
Vivk, x,7) = 1 (pk, vk) < Setup(F)
Pr A ; 7 <« P(pk, x) ~ 0
(F,x,w) € % w < Es(pk, x)




What about privacy?

0
F(x,w) := SHA2(w) = x:
Does proof reveal info about preimage”

o ?
F((m, pk), o) := VerifySignature(pk,m,o) = 1:
Does proof reveal info about which signature was used?

L . ?
F(x = score, w = credit_hist) := CreditModel(w) = x
Does proof reveal info about credit history?

Verifier is the adversary now!



Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: Proof reveals no information to V other
than validity of w



Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: For all (F, x,w) € R, and all efficient \Y

there exists an simulator Sim such that

(pk, vk) < Setup(F)
Pr | V(vk, x, 7) : _ =Pr |V(vk, x,7n) :
< Sim(pk, x)

(pk, vk) < Setup(F)
m < P(pk,x,w)



Doesn’t this break soundness?

(pk, vk) < Setup(F)
Pr |V(vk,x, 7) : _ = Pr |V(vk,x, 7)) :
< Sim(pk, x)

(pk, vk) < Setup(F’)
n < P(pk, x, w)

Sim has same success probability as honest prover!

This is actually okay: we provide Sim with additional powers!
- Interactive case: Sim can rewind verifier
- Non-interactive case: Sim gets “trapdoor”/secret information
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What about succinct verification?
Succinctness: | 7| = O(polylog | F'|)

6 )
F(x,w) = SHA2'(w) = x -
Do | need to compute 10° hashes to verify proof?

L . ?
F(x = score, w = credit_hist) = CreditModel(w) = x
Do | need to evaluate complex model to verify proof?



Strongly Succinct zkSNARKSs

and Time(V) = O(polylog(| F'|), |x])



Constructing zkSNARKSs



Starting point: Trivial NP Protocol

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1: Non-succinct proof!
Problem 2: Non-succinct verification!
Problem 3: Not hiding at all!
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Strawman 1: Hash the witness

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!
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Strawman 2: Commit to the witness

o "
Prover . — )
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
\_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!



Commitment Schemes

Commit(w; r) = cm
satistying the following properties

e Binding: For all efficient adv. &,
Pr |Commit(w; r) = Commit(w’; r') : (w,r,w,r) « 9| = 0
(no adv can open commitment to two diff values)

e Hiding: For all w, w’, and all adv. &,
A (Commit(w; r)) = A (Commit(w’; r'))

(no adv can learn committed value, i.e. comms are indistinguishable)
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A standard construction

Let H be a cryptographic hash function. Then
Commit(w;r) := Hw, r)

IS a commitment scheme
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Strawman 2: Commit to the witness

o "
Prover . — )
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
\_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3 solved: COMM hides w!



Performing checks on
committed data?



What does V do in the Trivial NP proof?

Prover . — )
F proving key Veritier
X public input F verifying key
w private witness w X public input
_ J N J

Evaluate F(x, w)!

To apply this to our commitment-based protocol,
do we need a “fully-homomorphic” commitment?



Homomorphic Commitments?

Pair of algorithms with the following syntax:
e Commit(w;r) > cm
e Commits to the message
e Eval(F,,cm) — F(x,w)
e Fvaluates a function over the committed
message, and outputs the result in the clear.
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Strawman 3: Homomorphic Commitments

~ M
Prover(pk, x, w)

_ Verifier(vk, x)
1.cm := Commit(w;r),  cm )
— —> eval(F,cm) =1

\_ J _ ),

Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof

Succinct pf size: Follows if eval. proof is succinct
ZK: ???

Problem 1: This would violate ZK: no hiding!
Problem 2: All constructions are inefficient!
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ldea: Ask Prover to help

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm

Does this work?
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Strawman 4: Functional Commitments

e )
Prover(pk, x, w)
1. Commit(w: 7) Verifier(vk, x)
. cm
2. ProveEval(F,w;r) —> CheckEval(F,, cm,1,7)
]ZFx
N ™ ) J

Completeness: Follows from that of (ProveEval, CheckEval)
Knowledge Soundness: Ditto

ZK: Follows from hiding
Succinct pf size: Follows if eval. proof is succinct

Are we done?

No! We just pushed the problem one layer down!
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Problem: This is a zkSNARK for F

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm
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Let’s Reassess Our Status

Trivial NP Proof
System

Compiler




How about we rebalance?

More Complex
Proof System

Compiler




What commitment schemes exist?

Polynomial commitments:
« F.(m): Interpret m as univariate poly f(X) in [F[X] and evaluate at z

Multilinear commitments: €.0. f(Xpr e Xpe) = X123+ X,24%5 + X
« F=(m): Interpret m as multilinear poly f(X) in F[X] and evaluate at Z

Vector commitments:
= F;(m): Interpret m as vector vin [F"* and return v;

Inner-product commitments:
« Fz(m): Interpret m as vector Vin F" and return (V, g)

Which to pick?
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A: Polynomials!
@ Benedikt Biinz

Reed - Solomon code: Polynomial
Zero-Knwoledge Proof Systems: Polynomials
Secret Sharing: Polynomial Evaluations
Identity Testing: Polynomials equal?

FFTs: Polynomials

FRI: FFTs-> Polynomials
SNARK: Polynomials

STARK: SNARK

Security Parameter: Polynomial
Lagrange: Polynomial
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Let’s pick polynomials

-

Compiler

L

&




Polynomial
Interactive
Oracle
Proofs



Polynomial |OPS (awcie, cHmmvwzo, BFs20)

Prover

(x, w)

.

J

P

A

v

Pt

A

-...
~

\§

Verifier 1

X
Verifier queries are

evaluation points

4:( QUERY J

'

4—( DECISION )

_/

e Completeness: \Whenever (x, w) € R, there is a strategy for P that
outputs only polynomials, and which causes V to accepit.

e Knowledge Soundness: \Whenever V accepts against a P that
outputs only polynomials, then P “knows” w such that (x, w) € R.
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Majority of innovation is in PIOPs
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Polynomial
Commitments



Recall: Commitment Schemes

NMaximum i
— | SgTUP | — Committer key ck

msg SIZ@ N Verifier key vk
( ) 4 N
SENDER RECEIVER
cm « ComMmIT(ck, m; r) cm >
. ) (m, r) " cm Z commiT(ck, m; r)

e Binding: For m; # m,, Commit(ck, m; r;) # Commit(ck, m; r,), for any
11,1

® Hiding: cm reveals no information about m before reveal



Polynomial Commitments

Maximum Committer key ck
SETUP Verifier key vk
degree D y
( N\ 4
SENDER RECEIVER
1.cm « CoMMIT(cK, p) cm >
2.v < p(2) 3
3.m < OPEN(ck, cm, p, z) (v, ) > CHECK(Vk, cm, z, v, )

e Completeness: \Whenever p(z) = v, R accepts.

e Extractability: \Whenever R accepts, S8’s commitment cm
“contains” a polynomial p of degree at most D.

® Hiding: cm and 7 reveal no information about p other than v



Polynomial Commitments

Committer key ck
Verifier key vk

NMaximum
— | SETUP | —
degree D
SENDER
1.[cm] « CoMmIT(pk, [p], [4]) [cm]
2.[v] + [pI(0) 0
3.1 « OPEN(pK, [p], [d], O) ([v], n)

N\

RECEIVER

CHECK(VK, [cm], O, [v], [d], =)

J

For efficiency improvements, you need

e Batch commitment

e Batch opening
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A selection of constructions

In the last 10 years, several constructions with different
® Cryptographic assumptions
® Prover and verifier efficiency and proof sizes

® Homomorphism and batching properties

Looking ahead, this enables SNARKs with many different properties

I KZG10 I PST13 I IPA I Hyrax I Dory I BFS20
crypto Pairings Pairings DLog + RO DLog + RO Pairing + RO GUO + RO
# variables 1 m 1

setup type Private Private

m

commitment
size

1 1

proof size

O(m) G O(log d) G _ O(log d) G O(log d) G

verifier time Oo(m) G
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PIOP + PC = SNARK



PIOPs + PC Schemes @ SNARK

a ) a )
P(pk,C,x, w) V(vk, C, x)
( - —2; —»(PC.COMMIT )-_ cm, (» f?\
4 ) = < [ L
SeTuP(1*, N) g 1" .
degree D ! ‘ .
max degree 4—( PIOP(N) ) & D, —>(PC.COMMIT )__ cm, b» w
(ck, vK) — ( PC.SETUP(D) ) O e roel o
tout prover key pk = ck
kou bu verifier key vk ) I
0
* v
( PC.OPEN )— (m, [v]) =( DECISTON )
L . L ( PC.CHECK )j

+ Fiat—Shamir to get non-interactivity
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Properties

e Completeness: Follows from completeness of PC and AHP.

e Proof of Knowledge: \Whenever V accepts but
C(X, W) = 0, we can construct either an adversarial prover against
PIOP, or an adversary that breaks extractability of PC.

e Zero Knowledge: Follows from hiding of PC and bounded-query ZK
of AHP.

e Verifier efficiency:
T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)
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